3.3.19 \(\int \tanh ^3(x) (a+b \tanh ^2(x))^{3/2} \, dx\) [219]

Optimal. Leaf size=82 \[ (a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}-\frac {\left (a+b \tanh ^2(x)\right )^{5/2}}{5 b} \]

[Out]

(a+b)^(3/2)*arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))-(a+b)*(a+b*tanh(x)^2)^(1/2)-1/3*(a+b*tanh(x)^2)^(3/2)-1
/5*(a+b*tanh(x)^2)^(5/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {3751, 457, 81, 52, 65, 214} \begin {gather*} -\frac {\left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}-(a+b) \sqrt {a+b \tanh ^2(x)}+(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^3*(a + b*Tanh[x]^2)^(3/2),x]

[Out]

(a + b)^(3/2)*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - (a + b)*Sqrt[a + b*Tanh[x]^2] - (a + b*Tanh[x]^2)^(
3/2)/3 - (a + b*Tanh[x]^2)^(5/2)/(5*b)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \tanh ^3(x) \left (a+b \tanh ^2(x)\right )^{3/2} \, dx &=\text {Subst}\left (\int \frac {x^3 \left (a+b x^2\right )^{3/2}}{1-x^2} \, dx,x,\tanh (x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {x (a+b x)^{3/2}}{1-x} \, dx,x,\tanh ^2(x)\right )\\ &=-\frac {\left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}+\frac {1}{2} \text {Subst}\left (\int \frac {(a+b x)^{3/2}}{1-x} \, dx,x,\tanh ^2(x)\right )\\ &=-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}-\frac {\left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}+\frac {1}{2} (a+b) \text {Subst}\left (\int \frac {\sqrt {a+b x}}{1-x} \, dx,x,\tanh ^2(x)\right )\\ &=-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}-\frac {\left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}+\frac {1}{2} (a+b)^2 \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}-\frac {\left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}+\frac {(a+b)^2 \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tanh ^2(x)}\right )}{b}\\ &=(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-(a+b) \sqrt {a+b \tanh ^2(x)}-\frac {1}{3} \left (a+b \tanh ^2(x)\right )^{3/2}-\frac {\left (a+b \tanh ^2(x)\right )^{5/2}}{5 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 86, normalized size = 1.05 \begin {gather*} (a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\frac {\sqrt {a+b \tanh ^2(x)} \left (3 a^2+20 a b+15 b^2+b (6 a+5 b) \tanh ^2(x)+3 b^2 \tanh ^4(x)\right )}{15 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^3*(a + b*Tanh[x]^2)^(3/2),x]

[Out]

(a + b)^(3/2)*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - (Sqrt[a + b*Tanh[x]^2]*(3*a^2 + 20*a*b + 15*b^2 + b
*(6*a + 5*b)*Tanh[x]^2 + 3*b^2*Tanh[x]^4))/(15*b)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(487\) vs. \(2(66)=132\).
time = 0.58, size = 488, normalized size = 5.95

method result size
derivativedivides \(-\frac {\left (a +b \left (\tanh ^{2}\left (x \right )\right )\right )^{\frac {5}{2}}}{5 b}-\frac {\left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )\right )}{2}-\frac {\left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )\right )}{2}\) \(488\)
default \(-\frac {\left (a +b \left (\tanh ^{2}\left (x \right )\right )\right )^{\frac {5}{2}}}{5 b}-\frac {\left (b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )\right )}{2}-\frac {\left (b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )\right )}{2}\) \(488\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3*(a+b*tanh(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/5*(a+b*tanh(x)^2)^(5/2)/b-1/6*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(3/2)-1/2*b*(1/4*(2*b*(tanh(x)-1)+2*b)/
b*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+1/8*(4*b*(a+b)-4*b^2)/b^(3/2)*ln((b*(tanh(x)-1)+b)/b^(1/2)+(b*(t
anh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)))-1/2*(a+b)*((b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+b^(1/2)*ln((b*
(tanh(x)-1)+b)/b^(1/2)+(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))-(a+b)^(1/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*
(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x)-1)))-1/6*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+
b)^(3/2)+1/2*b*(1/4*(2*b*(1+tanh(x))-2*b)/b*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)+1/8*(4*b*(a+b)-4*b^2)/
b^(3/2)*ln((b*(1+tanh(x))-b)/b^(1/2)+(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)))-1/2*(a+b)*((b*(1+tanh(x))^2
-2*b*(1+tanh(x))+a+b)^(1/2)-b^(1/2)*ln((b*(1+tanh(x))-b)/b^(1/2)+(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))-
(a+b)^(1/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x))
))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3*(a+b*tanh(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tanh(x)^2 + a)^(3/2)*tanh(x)^3, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2188 vs. \(2 (66) = 132\).
time = 0.59, size = 4941, normalized size = 60.26 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3*(a+b*tanh(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/60*(15*((a*b + b^2)*cosh(x)^10 + 10*(a*b + b^2)*cosh(x)*sinh(x)^9 + (a*b + b^2)*sinh(x)^10 + 5*(a*b + b^2)*
cosh(x)^8 + 5*(9*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^8 + 40*(3*(a*b + b^2)*cosh(x)^3 + (a*b + b^2)*cosh
(x))*sinh(x)^7 + 10*(a*b + b^2)*cosh(x)^6 + 10*(21*(a*b + b^2)*cosh(x)^4 + 14*(a*b + b^2)*cosh(x)^2 + a*b + b^
2)*sinh(x)^6 + 4*(63*(a*b + b^2)*cosh(x)^5 + 70*(a*b + b^2)*cosh(x)^3 + 15*(a*b + b^2)*cosh(x))*sinh(x)^5 + 10
*(a*b + b^2)*cosh(x)^4 + 10*(21*(a*b + b^2)*cosh(x)^6 + 35*(a*b + b^2)*cosh(x)^4 + 15*(a*b + b^2)*cosh(x)^2 +
a*b + b^2)*sinh(x)^4 + 40*(3*(a*b + b^2)*cosh(x)^7 + 7*(a*b + b^2)*cosh(x)^5 + 5*(a*b + b^2)*cosh(x)^3 + (a*b
+ b^2)*cosh(x))*sinh(x)^3 + 5*(a*b + b^2)*cosh(x)^2 + 5*(9*(a*b + b^2)*cosh(x)^8 + 28*(a*b + b^2)*cosh(x)^6 +
30*(a*b + b^2)*cosh(x)^4 + 12*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^2 + a*b + b^2 + 10*((a*b + b^2)*cosh(
x)^9 + 4*(a*b + b^2)*cosh(x)^7 + 6*(a*b + b^2)*cosh(x)^5 + 4*(a*b + b^2)*cosh(x)^3 + (a*b + b^2)*cosh(x))*sinh
(x))*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 +
2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*c
osh(x)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b
)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*co
sh(x)^5 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b +
3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(
x)^4 + 2*a^3 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6
 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*
cosh(x)^3 + 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 + 18*a^2*cosh(x)^2
+ 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b -
 b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x
)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7 + 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^
2 + b^3)*cosh(x)^3 + (2*a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4
*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + 15*((a*b +
b^2)*cosh(x)^10 + 10*(a*b + b^2)*cosh(x)*sinh(x)^9 + (a*b + b^2)*sinh(x)^10 + 5*(a*b + b^2)*cosh(x)^8 + 5*(9*(
a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^8 + 40*(3*(a*b + b^2)*cosh(x)^3 + (a*b + b^2)*cosh(x))*sinh(x)^7 + 1
0*(a*b + b^2)*cosh(x)^6 + 10*(21*(a*b + b^2)*cosh(x)^4 + 14*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^6 + 4*(
63*(a*b + b^2)*cosh(x)^5 + 70*(a*b + b^2)*cosh(x)^3 + 15*(a*b + b^2)*cosh(x))*sinh(x)^5 + 10*(a*b + b^2)*cosh(
x)^4 + 10*(21*(a*b + b^2)*cosh(x)^6 + 35*(a*b + b^2)*cosh(x)^4 + 15*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)
^4 + 40*(3*(a*b + b^2)*cosh(x)^7 + 7*(a*b + b^2)*cosh(x)^5 + 5*(a*b + b^2)*cosh(x)^3 + (a*b + b^2)*cosh(x))*si
nh(x)^3 + 5*(a*b + b^2)*cosh(x)^2 + 5*(9*(a*b + b^2)*cosh(x)^8 + 28*(a*b + b^2)*cosh(x)^6 + 30*(a*b + b^2)*cos
h(x)^4 + 12*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^2 + a*b + b^2 + 10*((a*b + b^2)*cosh(x)^9 + 4*(a*b + b^
2)*cosh(x)^7 + 6*(a*b + b^2)*cosh(x)^5 + 4*(a*b + b^2)*cosh(x)^3 + (a*b + b^2)*cosh(x))*sinh(x))*sqrt(a + b)*l
og(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x
)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)
^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - b*cosh(x
))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*((3*a^2 + 26*a*b + 23*b^2)*cosh(x
)^8 + 8*(3*a^2 + 26*a*b + 23*b^2)*cosh(x)*sinh(x)^7 + (3*a^2 + 26*a*b + 23*b^2)*sinh(x)^8 + 4*(3*a^2 + 20*a*b
+ 12*b^2)*cosh(x)^6 + 4*(7*(3*a^2 + 26*a*b + 23*b^2)*cosh(x)^2 + 3*a^2 + 20*a*b + 12*b^2)*sinh(x)^6 + 8*(7*(3*
a^2 + 26*a*b + 23*b^2)*cosh(x)^3 + 3*(3*a^2 + 20*a*b + 12*b^2)*cosh(x))*sinh(x)^5 + 2*(9*a^2 + 54*a*b + 49*b^2
)*cosh(x)^4 + 2*(35*(3*a^2 + 26*a*b + 23*b^2)*cosh(x)^4 + 30*(3*a^2 + 20*a*b + 12*b^2)*cosh(x)^2 + 9*a^2 + 54*
a*b + 49*b^2)*sinh(x)^4 + 8*(7*(3*a^2 + 26*a*b + 23*b^2)*cosh(x)^5 + 10*(3*a^2 + 20*a*b + 12*b^2)*cosh(x)^3 +
(9*a^2 + 54*a*b + 49*b^2)*cosh(x))*sinh(x)^3 + 4*(3*a^2 + 20*a*b + 12*b^2)*cosh(x)^2 + 4*(7*(3*a^2 + 26*a*b +
23*b^2)*cosh(x)^6 + 15*(3*a^2 + 20*a*b + 12*b^2)*cosh(x)^4 + 3*(9*a^2 + 54*a*b + 49*b^2)*cosh(x)^2 + 3*a^2 + 2
0*a*b + 12*b^2)*sinh(x)^2 + 3*a^2 + 26*a*b + 23*b^2 + 8*((3*a^2 + 26*a*b + 23*b^2)*cosh(x)^7 + 3*(3*a^2 + 20*a
*b + 12*b^2)*cosh(x)^5 + (9*a^2 + 54*a*b + 49*b^2)*cosh(x)^3 + (3*a^2 + 20*a*b + 12*b^2)*cosh(x))*sinh(x))*sqr
t(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - ...

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 175 vs. \(2 (70) = 140\).
time = 17.08, size = 175, normalized size = 2.13 \begin {gather*} - \frac {2 a \left (\frac {b^{2} \sqrt {a + b \tanh ^{2}{\left (x \right )}}}{2} + \frac {b^{2} \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\left (x \right )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}} + \frac {b \left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}{6}\right )}{b^{2}} - \frac {2 \left (\frac {b^{3} \sqrt {a + b \tanh ^{2}{\left (x \right )}}}{2} + \frac {b^{3} \left (a + b\right ) \operatorname {atan}{\left (\frac {\sqrt {a + b \tanh ^{2}{\left (x \right )}}}{\sqrt {- a - b}} \right )}}{2 \sqrt {- a - b}} + \frac {b \left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {5}{2}}}{10} + \frac {\left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}} \left (- \frac {a b}{2} + \frac {b^{2}}{2}\right )}{3}\right )}{b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**3*(a+b*tanh(x)**2)**(3/2),x)

[Out]

-2*a*(b**2*sqrt(a + b*tanh(x)**2)/2 + b**2*(a + b)*atan(sqrt(a + b*tanh(x)**2)/sqrt(-a - b))/(2*sqrt(-a - b))
+ b*(a + b*tanh(x)**2)**(3/2)/6)/b**2 - 2*(b**3*sqrt(a + b*tanh(x)**2)/2 + b**3*(a + b)*atan(sqrt(a + b*tanh(x
)**2)/sqrt(-a - b))/(2*sqrt(-a - b)) + b*(a + b*tanh(x)**2)**(5/2)/10 + (a + b*tanh(x)**2)**(3/2)*(-a*b/2 + b*
*2/2)/3)/b**2

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 1063 vs. \(2 (66) = 132\).
time = 1.38, size = 1063, normalized size = 12.96 \begin {gather*} \frac {1}{2} \, {\left (a + b\right )}^{\frac {3}{2}} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right ) - \frac {1}{2} \, {\left (a + b\right )}^{\frac {3}{2}} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right ) - \frac {{\left (a^{2} + 2 \, a b + b^{2}\right )} \log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {4 \, {\left (15 \, {\left (a^{2} + 4 \, a b + 3 \, b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{9} + 15 \, {\left (7 \, a^{2} + 20 \, a b + 9 \, b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{8} \sqrt {a + b} + 20 \, {\left (15 \, a^{3} + 39 \, a^{2} b + 21 \, a b^{2} + b^{3}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{7} + 20 \, {\left (21 \, a^{3} + 21 \, a^{2} b - 57 \, a b^{2} - 65 \, b^{3}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{6} \sqrt {a + b} + 2 \, {\left (105 \, a^{4} - 210 \, a^{3} b - 1860 \, a^{2} b^{2} - 1590 \, a b^{3} + 19 \, b^{4}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{5} - 10 \, {\left (21 \, a^{4} + 126 \, a^{3} b + 288 \, a^{2} b^{2} - 390 \, a b^{3} - 349 \, b^{4}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{4} \sqrt {a + b} - 20 \, {\left (21 \, a^{5} + 63 \, a^{4} b - 18 \, a^{3} b^{2} - 378 \, a^{2} b^{3} - 235 \, a b^{4} + 19 \, b^{5}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{3} - 20 \, {\left (15 \, a^{5} + 21 \, a^{4} b - 126 \, a^{3} b^{2} - 90 \, a^{2} b^{3} + 367 \, a b^{4} + 325 \, b^{5}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} \sqrt {a + b} - 5 \, {\left (21 \, a^{6} + 24 \, a^{5} b - 243 \, a^{4} b^{2} + 280 \, a^{3} b^{3} + 815 \, a^{2} b^{4} - 944 \, a b^{5} - 1233 \, b^{6}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} - {\left (15 \, a^{6} - 165 \, a^{4} b^{2} + 920 \, a^{3} b^{3} - 1147 \, a^{2} b^{4} - 504 \, a b^{5} + 1713 \, b^{6}\right )} \sqrt {a + b}\right )}}{15 \, {\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} + a - 3 \, b\right )}^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3*(a+b*tanh(x)^2)^(3/2),x, algorithm="giac")

[Out]

1/2*(a + b)^(3/2)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a +
b) + sqrt(a + b))) - 1/2*(a + b)^(3/2)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x)
 - 2*b*e^(2*x) + a + b) - sqrt(a + b))) - 1/2*(a^2 + 2*a*b + b^2)*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*
x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b)))/sqrt(a + b) - 4/15*(15*(a
^2 + 4*a*b + 3*b^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^9
+ 15*(7*a^2 + 20*a*b + 9*b^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) +
a + b))^8*sqrt(a + b) + 20*(15*a^3 + 39*a^2*b + 21*a*b^2 + b^3)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4
*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^7 + 20*(21*a^3 + 21*a^2*b - 57*a*b^2 - 65*b^3)*(sqrt(a + b)*e^(2*x)
- sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^6*sqrt(a + b) + 2*(105*a^4 - 210*a^3*b - 18
60*a^2*b^2 - 1590*a*b^3 + 19*b^4)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x
) + a + b))^5 - 10*(21*a^4 + 126*a^3*b + 288*a^2*b^2 - 390*a*b^3 - 349*b^4)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4
*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^4*sqrt(a + b) - 20*(21*a^5 + 63*a^4*b - 18*a^3*b^2 - 378
*a^2*b^3 - 235*a*b^4 + 19*b^5)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) +
 a + b))^3 - 20*(15*a^5 + 21*a^4*b - 126*a^3*b^2 - 90*a^2*b^3 + 367*a*b^4 + 325*b^5)*(sqrt(a + b)*e^(2*x) - sq
rt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2*sqrt(a + b) - 5*(21*a^6 + 24*a^5*b - 243*a^4*
b^2 + 280*a^3*b^3 + 815*a^2*b^4 - 944*a*b^5 - 1233*b^6)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*
a*e^(2*x) - 2*b*e^(2*x) + a + b)) - (15*a^6 - 165*a^4*b^2 + 920*a^3*b^3 - 1147*a^2*b^4 - 504*a*b^5 + 1713*b^6)
*sqrt(a + b))/((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2 + 2*(
sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*sqrt(a + b) + a - 3*b)^
5

________________________________________________________________________________________

Mupad [B]
time = 10.99, size = 112, normalized size = 1.37 \begin {gather*} -\frac {{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{5/2}}{5\,b}-\left (\frac {a+b}{3\,b}-\frac {a}{3\,b}\right )\,{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{3/2}-\left (a+b\right )\,\left (\frac {a+b}{b}-\frac {a}{b}\right )\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}-\mathrm {atan}\left (\frac {{\left (a+b\right )}^{3/2}\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}\,1{}\mathrm {i}}{a^2+2\,a\,b+b^2}\right )\,{\left (a+b\right )}^{3/2}\,1{}\mathrm {i} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3*(a + b*tanh(x)^2)^(3/2),x)

[Out]

- (a + b*tanh(x)^2)^(5/2)/(5*b) - ((a + b)/(3*b) - a/(3*b))*(a + b*tanh(x)^2)^(3/2) - atan(((a + b)^(3/2)*(a +
 b*tanh(x)^2)^(1/2)*1i)/(2*a*b + a^2 + b^2))*(a + b)^(3/2)*1i - (a + b)*((a + b)/b - a/b)*(a + b*tanh(x)^2)^(1
/2)

________________________________________________________________________________________